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Abstract.
Background: A univariate neurodegeneration biomarker (UNB) based on MRI with strong statistical discrimination power
would be highly desirable for studying hippocampal surface morphological changes associated with APOE �4 genetic risk for
AD in the cognitively unimpaired (CU) population. However, existing UNB work either fails to model large group variances
or does not capture AD induced changes.
Objective: We proposed a subspace decomposition method capable of exploiting a UNB to represent the hippocampal
morphological changes related to the APOE �4 dose effects among the longitudinal APOE �4 homozygotes (HM, N = 30),
heterozygotes (HT, N = 49) and non-carriers (NC, N = 61).
Methods: Rank minimization mechanism combined with sparse constraint considering the local continuity of the hippocampal
atrophy regions is used to extract group common structures. Based on the group common structures of amyloid-� (A�) positive
AD patients and A� negative CU subjects, we identified the regions-of-interest (ROI), which reflect significant morphometry
changes caused by the AD development. Then univariate morphometry index (UMI) is constructed from these ROIs.
Results: The proposed UMI demonstrates a more substantial statistical discrimination power to distinguish the longitudinal
groups with different APOE �4 genotypes than the hippocampal volume measurements. And different APOE �4 allele load
affects the shrinkage rate of the hippocampus, i.e., HM genotype will cause the largest atrophy rate, followed by HT, and the
smallest is NC.
Conclusion: The UMIs may capture the APOE �4 risk allele-induced brain morphometry abnormalities and reveal the dose
effects of APOE �4 on the hippocampal morphology in cognitively normal individuals.

Keywords: Effect size, magnetic resonance imaging, permutation t-test, radial distance, regions-of-interest, subspace decom-
position
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INTRODUCTION

Alzheimer’s disease (AD) is an irreversible neu-
rodegenerative disorder characterized by progressive
cognitive impairment that interferes with memory,
thinking, and behavior. For AD prevention thera-
pies to have a maximal effect, they might need to
be initiated before measurable impairments in cogni-
tion, at which time extensive pathology likely already
exists [1, 2]. Therefore, there is a need to study
biomarkers closely related to AD progression in its
earliest non-symptomatic and symptomatic stages to
observe AD development and evaluate the effective-
ness of early interventions. It is well known that
the apolipoprotein E (APOE) �4 allele is a major
genetic risk factor for late-onset AD [3, 4]. Its dis-
covery has made it possible to study large numbers
of genetically at-risk individuals before the onset of
symptomatic memory impairment, and has led to the
concept of the preclinical stage of AD [5]. Therefore,
studying the association between APOE genotype
with neurodegenerative pathology in healthy adults
may benefit the development of preclinical AD
biomarkers.

Numerous studies have revealed the pathological
correlations between probable AD and the APOE
�4 allele by using a variety of biomarkers, includ-
ing magnetic resonance imaging (MRI) studies of
whole brain atrophy rates of APOE �4 carriers
[6], fluorodeoxyglucose positron emission tomogra-
phy (FDG-PET) studies of APOE �4 carriers that
have revealed AD-like patterns of reduced cerebral
metabolic rate glucose [7, 8], measures of increased
amyloid plaque burden determined from increases in
the standard uptake value ratio of florbetapir PET
[9], and distinct default mode network alterations
observed in the resting-state functional MRI analysis
[10], etc. Among them, structural MRI (sMRI) has
been widely used to identify brain structure changes,
including cortical atrophy [11, 12], hippocampal
atrophy [13–15], or ventricular enlargement [14,
16], which can serve as the indicative diagnostic
biomarkers of early AD, owing to their close rela-
tionship between neurodegeneration and cognition.
Hippocampal atrophy measures from structural MRI
are widely used for investigating the genetic influence
of APOE �4 on hippocampal morphology because
the changes in hippocampal morphometry become
apparent in the early stages of memory decline [13,
17–20]. However, the genetic influence of APOE �4
on hippocampal morphometry research has reported
mixed results. Some studies have elucidated a

dose-dependent disease vulnerability on the hip-
pocampal structure level [21–26], including our own
work [27], e.g., significantly reduced hippocam-
pal volume or accelerated longitudinal hippocampal
atrophy has been found in healthy APOE �4 homozy-
gotes (HM), as compared to heterozygotes (HT) and
non-carriers (NC). Some other studies [28–33] did
not find significant group differences between HM,
HT, and NC. Therefore, developing sensitive and
reliable brain imaging biomarkers to validate the
dose-dependent impact of the APOE �4 allele on
hippocampus among cognitively unimpaired individ-
uals would be highly advantageous to preclinical AD
diagnosis and prognosis.

While much APOE genetic influence on hippocam-
pal morphometry research adopted multivariable
imaging biomarkers (e.g., [26, 27]), a univariate neu-
rodegeneration biomarker based on an individual
patient’s brain scans with high diagnostic accuracy
would be highly desirable for clinical use [34] and
patient screening in clinical trials [2]. Such a person-
alized measure may overcome inflated Type I error
due to multiple comparisons [30, 31]. For example,
for randomized clinical trials, regulatory agencies,
including the Food and Drug Administration, requires
conventional univariate hypothesis testing and its
associated statistical power analysis [2]. Meanwhile,
a single MRI-based measure of cerebral atrophy was
used as a neurodegeneration biomarker in the recently
proposed AD amyloid/tau/neurodegeneration frame-
work [35]. In our recent work [36], we proposed
a subspace decomposition framework to generate a
univariate morphometry index to quantify the hip-
pocampal morphological changes induced by AD
based on the reliable and informative region-of-
interest (ROI), which takes into account the intense
image noise and the significant within-group vari-
ance on the obtained structural MR images. However,
our previous algorithm for solving stable principal
component pursuit (SPCP) has few limitations. First,
our previous work’s low-rank subspace decomposi-
tion algorithm is the alternating splitting augmented
Lagrangian method (ASALM). The disadvantage of
ASALM is that its convergence is slow for real-time
application [37]. Second, the singular value decom-
position (SVD) in our previous algorithm used a
low-rank matrix factorization mechanism to factor-
ize a large-sized matrix into two small-sized matrices
generated by implementing matrix column orthogo-
nal strategy and low-rank constraint. Although this
mechanism can effectively reduce the SVD compu-
tation cost for a large-scale matrix, the excessive
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intermediate processing steps require further opti-
mization.

In this work, we propose an improved subspace
decomposition framework to establish univariate
and personalized neurodegeneration MRI biomarkers
with strong statistical discrimination power [34]. We
hypothesize that the proposed univariate morphome-
try biomarker may distinguish hippocampal surface
morphological changes related to the APOE �4 dose
effects in the cognitively unimpaired population. In
our experiments, we first used sMRI images of 120
A� positive AD patients and 257 A� negative CU
subjects from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) cohort [38] to establish the
AD-specific abnormality patterns over the hippocam-
pal surface. We then compute a univariate similarity
index to examine the degree of similarity to this
AD-specific surface pattern for a given individual
subject from an independent Arizona APOE cohort
[39], including 140 cognitively unimpaired individ-
uals (30 HMs, 49 HTs, and 61 NCs). We aim to
test whether the proposed univariate morphometry
biomarker gains improved computational efficiency
and whether it has the superiority to the raw surface
and volume measurements in reflecting the morpho-
logical atrophy rates caused by different APOE �4
allele loads in the CU individuals.

MATERIALS AND METHODS

Subjects

Data used in the preparation of this article were
partially obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (http://adni.
loni.usc.edu). The ADNI was launched in 2003 as
a public-private partnership, led by Principal Inves-
tigator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial MRI,
PET, other biological markers, and clinical and
neuropsychological assessment can be combined to
measure the progression of mild cognitive impair-
ment and early AD. For up-to-date information, see
http://www.adni-info.org.

Specifically, the sMRI data used to generate AD-
specific abnormality patterns, including 120 amyloid-
� (A�) positive AD patients and 257 A� negative CU
subjects, were downloaded from the ADNI database
[38]. The reason for choosing A� positive subjects is
that the accumulation of A� is one of the hallmarks
of AD in human brains and a positive A� reading is

now accepted as ‘dementia due to AD’ together with
the presence of clinical symptoms [40].

To validate the effects of APOE �4 allele load
on hippocampal morphology, we used 140 cog-
nitively unimpaired individuals from the Arizona
APOE cohort [39] and studied longitudinal brain
imaging changes via statistical group difference anal-
ysis. The Arizona APOE cohort was established since
January 1, 1994, which contains cognitively normal
residents of Maricopa County aged 21 years and
older. Demographic, family, and medical history data
were obtained on each individual undergoing APOE
genotyping, and their identity was coded by a study
assistant. All individuals gave their written, informed
consent-approved by the Institutional Review Boards
of all participating institutions-and agree to have the
results of the APOE test withheld from them as
a precondition to their participation in this study.
Genetic determination of APOE allelic status was
performed using a polymerase chain reaction-based
assay [41]. All subjects were genotyped and classified
as APOE �4 carriers (NHM = 30, NHT = 49) or non-
carriers (NNC = 61). The study excludes subjects with
potentially confounding medical, neurological, or
psychiatric problems (such as prior stroke, traumatic
brain injury, memory, or other cognitive impairment,
parkinsonism, major depression, or substance abuse).
No subject included in the study met the published
criteria for mild cognitive impairment, AD, any other
form of dementia [42].

Algorithm pipeline

We briefly summarize our overall sequence of
steps used to compute the univariate morphome-
try biomarker. The following sections are detailed
explanations of each step. Figure 1 shows the
processing procedures in our system. First, we seg-
ment hippocampi from T1-weighted MR images
and reconstruct hippocampal surfaces. We register
hippocampal surfaces across subjects and compute
surface morphometry features, radial distance (RD)
[43, 44]. Second, we construct two group observation
matrices (i.e., A� positive AD observation matrix
and A� negative CU observation matrix) where all
RD features of each registered subject are stacked
as a column vector. To effectively extract the robust
group common morphological structure contained in
all individual RD features, we further decompose
each group observation matrix into low-rank compo-
nent, sparse component and noise using a subspace
decomposition algorithm. The low-rank component

http://adni.loni.usc.edu
http://www.adni-info.org
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Fig. 1. Processing procedures in our univariate morphometry biomarker system.

is the group common structure contributed by all the
subjects in the same group, the sparse component is
the sparse diversities which belong to specific indi-
vidual subjects. With the subspace decomposition
framework, we may obtain the two intrinsic group
common morphological structures of A� positive AD
group and A� negative CU group, which takes into
account the intense imaging noise and the significant
within-group variance on the obtained structure MR
images. Third, we compute AD-specific abnormal
surface patterns on the ROIs which are identified as
significantly different areas induced by AD between
the low-rank components of two groups, A� positive
AD group and A� negative CU group. We further use
the labeled ROIs and the registration result of an indi-
vidual hippocampal surface to compute the univariate
morphometry index (UMI). Finally, as application
demonstrations of the computed UMIs, we apply
them to study the longitudinal brain imaging changes
of the three APOE �4 genotype groups and dose
effects of APOE �4 alleles on the hippocampal mor-
phology.

Image acquisition and morphometry feature
extraction

High-resolution brain structural MRI scans were
acquired using 3 Tesla MRI scanners manufactured

by General Electric Healthcare, Siemens Medi-
cal Solutions, and Philips Medical Systems. For
each subject, a high-resolution T1 magnetiza-
tion-prepared spoiled gradient (SPGR) scan was
obtained in the sagittal plane. A T1-weighted pulse
sequence (radiofrequency-SPGR recall acquisition
in the steady state, repetition time = 33 ms, echo
time = 5 ms, alpha = 30◦, number of excitations = 1,
field-of-view = 24 cm, imaging matrix = 256× 93,
slice thickness = 1.5 mm, scan time = 13:36 min) was
used to acquire 124 contiguous horizontal MRI slices
with in-plane voxel dimensions of 0.94× 1.25 mm.

Based on the T1-weighted MRI scans, hippocam-
pal substructures were segmented by using FIRST in
the FMRIB Software Library [45] and 3D triangu-
lar hippocampal surface was reconstructed based on
marching cubes algorithm [46]. With the generated
conformal grid for each surface [47], we computed
the hippocampal surface’s conformal representation,
which represents the intrinsic and extrinsic features
of the surface, respectively. In addition, we carried
out a surface fluid registration algorithm [48] and
an inverse-consistent surface registration framework
to increase robustness [47]. Then all the surfaces
have a common reference frame and RD statis-
tical morphological measurements were computed
directly on these registered surfaces. RD is the dis-
tance from each surface point to its medial core
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(analogous to the centerline in a tube), representing
hippocampal atrophy or enlargement. The entire hip-
pocampal surface morphometry pipeline is described
in our prior work [47] and is publicly available at
https://www.nitrc.org/projects/mtsms 2020.

Subspace decomposition algorithm

When all individual RD features of the same group
are stacked into column vectors to form an obser-
vation matrix A = (a1, . . . , an) ∈ �m×n (ai denotes
the column vector which represent RD features of
i-th subject, m is the dimension of each subject RD
features and n is the number of the subjects within
the same group), the SPCP algorithm enables us to
decompose A into low-rank component L ∈ �m×n,
sparse component S ∈ �m×n, and noise N ∈ �m×n.
In order to improve the computation efficiency, we
apply Non-Smooth Augmented Lagrangian Algo-
rithm (NSA) [49] based on partial variable splitting to
solve this non-smooth convex optimization problem.
It is known that the recovery is possible even when the
data matrix, A, is corrupted with a dense error matrix,
‖N‖F ≤ δ, by solving the SPCP problem [50].

min
LS∈Rm×n

{‖L‖∗ + γ ‖S‖1, s.t. : ‖L+ S − A‖F ≤ δ} (1)

where ‖·‖∗ is the nuclear norm and ‖·‖1 is the l1 norm,
which are given by ‖L‖∗ =

∑
iσi(L) and ‖S‖1 =∑

i,j

∣∣Si,j

∣∣, respectively. And γ controls the relative
importance of the low-rank term L versus the sparse
term S. σi(L) is the ith largest singular value of L.

Based on NSA, the subproblems for solving
low-rank component L and sparse component S of
Equation (1) via the following iteration procedure:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lk+1 ← arg minL{‖L‖∗+〈Yk, L− Zk〉 + ρk

2
‖L− Zl ‖2F }

(Zk+1, Sk+1)← arg min(Z,S){
γ ‖S‖1 + 〈−Yk, Z − Lk+1〉 + ρk

2
‖Z − Lk+1 ‖2F

}

Yk+1 ← Yk + ρk(Lk+1 − Zk+1)

ρk+1 = αρk, α ≥ 1
(2)

Let Yk ∈ Rm×n and θk be optimal Lagrangian
dual variables for Zk = Lk and 1

2 ‖Z + S − A ‖2F≤
δ2

2 constraints, ρk > 0 is the penalty parameter for
the violation of the linear constraint and 〈.〉 denotes
the standard trace inner product. In procedure (2), the

subproblem for computing Lk+1 is a matrix shrink-
age problem which can be solved via thresholding
the singular values of the matrix (Zk − Yk/ρk) [51].
And the subproblem for computing Sk+1 is an ele-
ment shrinkage problem which can be solved via l1
norm:

Sk+1 = sign (A− (Lk+1 + Yk/ρk))�

max

{∣∣∣∣A−
(

Lk+1 + γk

ρk

)∣∣∣∣− Tth, 0

}

(3)
where Tth is the threshold which is defined as
Tth = (ρk + θk)/(

√
max(m, n) · ρk · θk), {θk}k∈z+

is a bounded sequence, and θk sat-
isfies the following expression δ =∥∥∥min

{
γ
θk

E,
ρk

ρk+θk

∣∣∣A− (Lk+1 + 1
ρk

Yk)
∣∣∣}

∥∥∥
F
, �

denotes the componentwise multiplication opera-
tor. The details about computing Lk+1 based on
improved partial SVD and computing Sk+1 by
considering the local continuity of the hippocampal
atrophy regions can be found in the Supplementary
Material. Based on the description above, we can
use the proposed method to recover the low-rank
component and the sparse component with the
local continuous constraint from the large-scale
data matrix under the complicated environment. In
particular, we can use the low-rank component L,
i.e., the essential group common structure, to detect
the group differences without the influence of the
individual’s specific diversities S and noise.

Univariate morphometry index for AD-specific
abnormal surface pattern similarity measure

A UMI reflecting individual AD-specific abnormal
surface pattern similarity is generated by summa-
rizing information in ROIs. Our UMI generation
procedure is similar to our prior work [36]. First, for
each registered vertex on the hippocampal surface,
we used permutation t-test [52] to analyze the group
difference for the low-rank components of the RD
features between A� positive AD group and A� neg-
ative CU group. Given the level of significance α, the
accepted vertices to form the ROIs can be obtained
for their permutation p-maps with the probabilities
< α. Since the extracted low-rank components rep-
resent the common morphological structure of the
group, the extracted ROIs based on low-rank compo-
nents obtained by subspace decomposition algorithm
can accurately reflect the hippocampal morphologi-
cal structure changes from CU to AD.

https://www.nitrc.org/projects/mtsms_2020
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Secondly, we use a vertex-wise two-sample inde-
pendent t-test for the mean differences between the
low-rank components of the A� negative CU and
the A� positive AD groups on the predefined ROIs.
The obtained t-map is then transformed into a z-
score map which is called as AD-specific abnormal
surface pattern. And a vertex-wise two-sample inde-
pendent t-test is applied for the differences between
raw RD measures of individual subject and the mean
low-rank components of the A� negative CU group
on the predefined ROIs. The obtained t-map is then
transformed into a z-score map which is called as
individual atrophy degree. At last, the UMIs can be
computed through the vertex-wise summation across
all the vertices on the predefined ROIs with the pro-
duction of AD-specific abnormal surface patterns and
the atrophy degrees of the individual subject. Thus,

UMI =
∑m

i=1(DTi ·DWi)

100
(4)

Here DTi denotes the atrophy degree at vertex i
of the individual subject, DWi is the AD-specific
abnormal surface pattern at vertex i between the AD
group and the CU group. From the Eq. (4), we can
see that the UMI measures the degree of similarity
to this AD-specific abnormal surface pattern for a
given individual subject on the selected ROIs. In other
words, the greater the UMI, the closer the atrophy
degree of the individual subject is from AD morpho-
logical characteristics.

Evaluation of the univariate biomarkers

For longitudinal cognitively unimpaired APOE �4
carriers (HM and HT) and non-carriers (NC) groups,
we analyze the longitudinal group changes of the
univariate biomarkers, including the UMIs, Mini-
Mental State Examination (MMSE) [53] scores,
Auditory Verbal Learning Test Long-Term Memory
(AVLT-LTM) [54] scores and hippocampal volume
measures, to compare the statistical discrimination
abilities of different univariate biomarkers based on
analysis of variance (ANOVA) method. All sub-
jects of each longitudinal group underwent two tests,
including the baseline test and a 24-month test. Mean-
while, Cohen’s d test is applied to evaluate the effect
size of the univariate biomarkers above. Cohen’s d
test takes the difference in means between two groups
and is divided by the pooled standard deviation of the
groups.

To further assess the statistical powers of the
univariate biomarkers, we calculate the required

Table 1
Demographic information of A� positive AD and A� negative CU

groups, from the ADNI cohort

AD CU Inferential
Statistics

Sample Size 120 257
Gender (M/F) 64/56 125/132 χ2 = 0.7214;

p = 0.40
Age 74.15± 7.47 75.24± 6.45 F = 2.13;

p = 0.15
Education 15.61± 2.69 16.10± 2.50 F = 2.94;

p = 0.09
MMSE 22.53± 3.25 28.93± 2.20 F = 503.67;

p < 0.0001

minimum sample sizes (MSS) by comparing the uni-
variate biomarker means of each longitudinal APOE
�4 genotype groups at two test time points (baseline
test and 24-month test). Suppose the means and stan-
dard deviations of the specific univariate biomarker
of each longitudinal group at two test time points
are (μ1, σ1) and (μ2, σ2). To conduct a two-sided
test with significance level � and power of 1-�, the
appropriate sample-size for the specific univariate
biomarker is as follows [55]:

MSS =
(
σ2

1 + σ2
2

) (
z1−α/2 + z1−β

)2


2 (5)

where 
 = |μ2 − μ1|. The significance level α is set
as 0.05 and the power 1-β is set as 0.8. For each longi-
tudinal group, if the MSS derived from A biomarker
is smaller than B biomarker, we can conclude that A
biomarker is more differentiated than B biomarker.
This indicates that MSS is an indicator for char-
acterizing the statistical identification ability of the
biomarkers.

RESULTS

ROIs extraction

In order to extract the significant morphological
group differences induced by AD, we apply the sub-
space decomposition to a cohort consisting of 120
A� positive AD patients and 257 A� negative CU
subjects from the ADNI database. Demographic and
clinical data of this cohort is compared using a one-
way analysis of variance, and the gender data was
analyzed by a chi-square test. Table 1 indicates that
the factors of age, gender, and education of these two
groups are matched, while the MMSE is significantly
different between these two groups.
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Table 2
The performance indicators for the left and right hippocampus
based on subspace decomposition algorithm (with data from the

ADNI cohort)

ρ0 rank(L) ‖S‖�,1 ‖L+ S − A‖/
‖A ‖

Left Hip-
pocampus

CU 0.09 11∼12 142∼150 0.056

AD 0.13 9∼11 209∼225 0.057
Right Hip-

pocampus
CU 0.08 11∼12 146∼153 0.057

AD 0.12 9∼11 218∼226 0.058

Because low-rank components correspond to
group common morphological structures, we apply
subspace decomposition algorithm to extract the low-
rank component of A� positive AD and A� negative
CU observation matrices, respectively. Each obser-
vation matrix is formed by stacking individuals of
each group. Considering the bias and variance of
the ROI generation model, we randomly divide the
subjects of each group into 10 folds and choose 9
folds from each group as the training sets respec-
tively. This process is repeated 10 times. The purpose
of this process is to validate if the generated ROIs
each time is consistent. The total performance indi-
cators for the left and the right hippocampus based on
our algorithm are shown in Table 2. Here we set the
parameter γ as 0.0082. From the performance indi-
cators in Table 2, the parameters setting ρ0, rank(L)
and ‖L+ S − A ‖/ ‖ A ‖ of each group (A� posi-
tive AD group or A� negative CU group) is similar
whether it is on the left or the right hippocampus.
Here the rank of L is obtained by counting the num-
ber of the eigenvalues of L whose values are greater
than three times the δ. Here δ = 0.15.

After extracting the L and S from the observation
matrix A, we can define the ROIs by using permuta-
tion t-test between the L of A� positive AD group and
the L of A� negative CU group. As the training sam-
ples are taken randomly each time (the changing rate
is about 10%), each ROI obtained will be inconsistent
if the extracted L components are not robust.

In order to verify whether the ROIs generated by
the L components are robust, we imitated the process
of generating the ROIs based on the L components,
and formed the ROIs based on the raw RD features
of A� positive AD group and A� negative CU group,
then verify whether the ROIs generated by each type
of data (L components or raw RDs) are consistent
when the training data is different at each time.

In addition, to improve the computational effi-
ciency, we run Monte Carlo to generate two random

groups for each registered sample point on the
surface, which takes relatively small random permu-
tation processes of the possible replicates. Here the
number of random permutation processes is set as
5,000. Moreover, the generated ROIs are the vertices
whose permutation t-test p-values (uncorrected for
multiple comparisons) representing the group differ-
ences are smaller than 0.00001. The generated ROIs
of the left hippocampus (LH) and right hippocam-
pus (RH) based on the low-rank components and the
RD data are shown in Fig. 2. Figure 2a and 2b are
the statistical ROI results for LH. Figure 2c and 2d
are the statistical ROI results for RH. Furthermore,
Fig. 2a and 2c are the statistical ROI results based
on the low-rank components. Figure 2b and 2d are
the statistical ROI results based on the raw RD data.
Non-blue colors show the number of times a vertex
is selected. The red color denotes that the vertex is
selected 10 times after 10 ROI generation processes.
For LH, the total number of ROI vertices based on
the low-rank components is 2,162, and the vertices
having been selected 10 times account for 75.28%
of the total number of ROI vertices, while they are
2,542 and 52.41% based on the raw RD data. For
the right hippocampus, they are 2,249 and 74.23%
based on the low-rank component, 2,518 and 54.23%
based on raw RD data. From the results, we can see
that the selected ROIs based on the low-rank compo-
nent are more robust than the ROIs based on the raw
RD data. It suggests that the low-rank component
can represent the essential common structure from
the subjects without the interference of the unique
individual structure and the noise.

In our previous work [36], we used the sub-
space decomposition algorithm (ASALM) to extract
low-rank components and sparse components based
on stable principal component pursuit which are
combined with a low-rank matrix factorization
mechanism [56]. This paper used the subspace
decomposition algorithm (NSA) to extract low-rank
components and sparse components based on a stable
principal component pursuit combined with a partial
SVD mechanism. Both mechanisms are to speed up
the SPCP optimization for large-scale matrices by
avoiding the full SVD computation. Moreover, the
low-rank components extracted by the two methods
have the same rank and high similarity. However, the
NSA algorithm has a faster convergence rate, i.e.,
fewer iteration steps, than the ASALM algorithm. A
brief convergence speed comparison of the two algo-
rithms is presented in Fig. 3. All the experiments are
performed with an Intel Core i7 personal computer,
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Fig. 2. The extracted ROIs for the group differences between A� positive AD group and A� negative CU group based on the low-rank data
and the RD data. (a) and (b) are the statistical ROI results for LH. (c) and (d) are the statistical ROI results for RH. And (a) and (c) are the
statistical ROIs based on the low-rank components. (b) and (d) are the statistical ROIs based on the RD data. All the statistic ROI results are
obtained by the permutation t-test (p < 0.00001, uncorrected for multiple comparisons). Non-blue colors show the number of times a vertex
is selected.

Fig. 3. Evolution of rank(Lk) for ASALM and NSA algorithms.

with 3.40 GHz CPU, 16 GB RAM and MATLAB
2016 installed in the Win 7 operating system. With
the same termination condition, the evolution of rank

(Lk) for extracting low-rank components of left hip-
pocampus of AD group shows that the results showed
that the extracted low-rank components of AD-LH
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Table 3
Demographic information of the different longitudinal genotype groups, from the AZ APOE cohort. Means are followed by standard

deviations for education, age, and MMSE measurements

Gender (M/F) Education Age MMSE

HM baseline 8/22 16.21± 2.18 65.01± 5.38 29.75± 0.58
HM m24 67.37± 5.43 29.54± 0.81
HT baseline 16/33 15.72± 2.41 68.01± 6.69 29.58± 0.79
HT m24 70.24± 6.64 29.58± 1.03
NC baseline 18/43 15.92± 2.24 66.64± 7.01 29.71± 0.59
NC m24 68.85± 6.94 29.68± 0.66
Inferential Statistics baseline χ2 = 0.33; p = 0.85 F = 0.38; p = 0.68 F = 1.21; p = 0.30 F = 0.59; p = 0.56

m24 F = 1.14; p = 0.32 F = 1.28; p = 0.28

and CU-LH groups based on the two methods have
the same ranks, that is, the rank equals to 10 for AD-
LH and 13 for CU-LH. Using Corr2 in Matlab, we
obtained that the correlation between the two low-
rank components based on the two methods is 0.992
for AD-LH, and 0.994 for CU-LH. To extract the final
low-rank components, the iteration number of the
NSA method accounts for about 38% of the ASALM
method. The NSA with a partial SVD mechanism
is more efficient than the ASALM with a low-rank
matrix factorization mechanism.

Longitudinal study for different APOE �4
genotype groups

There are 140 cognitively unimpaired individu-
als with 61 NCs, 49 HTs, and 30 HMs from the
Arizona APOE cohort. All subjects underwent two
tests, including the baseline test and a 24-month test.
Through the comparisons between the demographic
and clinical data of the different groups at these two
test time points, the statistical results in Table 3 indi-
cate that there are no significant group differences
in the factors of gender, education degree, age, and
MMSE between the three groups.

Based on the predefined ROIs from the low-rank
components of A� positive AD group and A� neg-
ative CU group determined above, we generated
the UMIs of the cognitively unimpaired individuals
with different APOE �4 genotypes (HM, HT, and
NC) at two test points (baseline test and 24-month
test) and studied the statistical differentiation abil-
ity of the UMIs for the different longitudinal groups.
Specifically, since the predefined ROIs represent the
significant group difference areas induced by AD, the
generated UMIs indicate the degree of similarity to
the AD-specific abnormal surface pattern for a given
individual subject with different APOE �4 genotypes
before the onset stage of AD. Combined the AD-
specific abnormal surface patterns and the individual

Table 4
The longitudinal study from baseline to 24-month follow-up for
different APOE �4 genotype groups (from the AZ APOE cohort)

based on different univariate biomarkers

Biomarker genotype MSS Effect Size

UMI NC 533 0.48
HT 393 0.53
HM 296 0.61

UMI-RD NC 1061 0.21
HT 823 0.31
HM 552 0.46

Volume NC 828 0.34
HT 661 0.42
HM 430 0.52

atrophy degrees on the selected ROIs, the UMIs of
the cognitively unimpaired individuals with differ-
ent APOE �4 genotypes can be computed through
Equation (4). In order to verify whether the generated
UMIs have strong statistical power for distinguish-
ing these three longitudinal groups, we introduce the
UMIs based on raw RD measures (UMI-RD) and the
volume data to compare the discrimination power
with the UMIs based on the subspace decomposi-
tion. The UMI-RDs of the different APOE �4 subjects
are computed according to Equation (4) based on the
obtained ROIs shown in Fig. 2b and 2d. The volu-
metric MRI measurements of the hippocampus are
generally accepted as the best-established biomark-
ers of clinical AD progression [57]. Moreover, the
hippocampal volume is computed on our smoothed
surfaces after linearly registered to the MNI imaging
space [58].

We computed the required MSS of three longitu-
dinal groups from baseline to 24-month follow-up
based on UMIs, UMI-RDs, and volume measures,
respectively. The comparison results are shown in
Table 4. Paired Cohen’s d measure computes the
effect sizes of the three longitudinal groups. For the
longitudinal NC, HT, and HM groups, the MSSs and
effect sizes for UMIs mean differences are 533 and
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Table 5
Mean Rf values of different biomarkers comparisons between different longitudinal genotype groups

(from the AZ APOE cohort)

Biomarker Group Comparisons Average Rf (%) ± Std (%) Inferential Statistical

UMI NC versus HM 0.30± 0.87 versus 0.98± 1.04 F = 11.99; p = 0.0008
NC versus HT 0.30± 0.87 versus 0.64± 0.64 F = 5.3; p = 0.023
HT versus HM 0.64± 0.64 versus 0.98± 1.04 F = 4.05; p = 0.048

UMI-RD NC versus HM 0.03± 0.08 versus 0.09± 0.20 F = 4.14; p = 0.045
NC versus HT 0.03± 0.08 versus 0.03± 0.03 F = 2.18; p = 0.14
HT versus HM 0.03± 0.03 versus 0.09± 0.20 F = 1.84; p = 0.18

volume NC versus HM –0.01± 0.04 versus –0.05± 0.08 F = 9.89; p = 0.0023
NC versus HT –0.01± 0.04 versus –0.03± 0.06 F = 4.61; p = 0.041
HT versus HM –0.03± 0.06 versus –0.05± 0.08 F = 2.21; p = 0.14

0.48, 393 and 0.53, 296 and 0.61. For UMI-RDs, the
MSSs and effect sizes of the longitudinal NC, HT,
and HM groups are 1061 and 0.21, 823 and 0.31,
552 and 0.46. For hippocampal volume measures, the
MSSs and effect sizes of the longitudinal NC, HT, and
HM groups are 828 and 0.34, 661 and 0.42, 430 and
0.52. This indicates that UMI, as a univariate mor-
phometry biomarker, has more substantial statistical
discrimination power to distinguish the longitudinal
groups with different APOE �4 genotypes than both
the UMI-RDs and the hippocampal volume measures.

Dose effects of APOE �4 alleles on the
longitudinal hippocampal morphological changes

To further validate the APOE �4 allele dose
effects on the longitudinal hippocampal atrophies,
the ANOVA method is applied on the UMI, UMI-
RD, and volume measurement changes between NC
and HT, NC and HM, and HT and HM, respectively.
The biomarker changes are described as the change
rates (Rf ) of the biomarker.

Rf = fsecond − ffirst

ffirst

(6)

where ffirst and fsecond represent the values of the
biomarkers at the baseline test and a 24-month test.
We computed the Rf values of UMIs, UMI-RDs, and
volume measurements of three longitudinal groups
with different APOE �4 genotypes, respectively. The
statistical results (shown in Table 5) show that the
mean Rf values of the UMIs and UMI-RDs have an
upward trend while the mean Rf values of the vol-
ume measures have a downward trend from NC to HT
to HM genotype. This means that different APOE �4
allele load affects the shrinkage rate of the hippocam-
pus, i.e., HM genotype will cause the largest atrophy
rate, followed by HT, and the smallest is NC.

The statistical results for mean Rf values com-
parisons between different longitudinal genotype
groups are computed by the ANOVA method. For
the mean Rf values comparisons of NC versus HM,
NC versus HT, and HT versus HM, the p-values
for UMIs are 0.0008, 0.023, and 0.048, respec-
tively. For UMI-RDs, the p-values are 0.045, 0.14,
and 0.18, respectively. For volume measurements,
the p-values are 0.0023, 0.041, and 0.14, respec-
tively. The results indicate that the UMIs may have
a stronger discrimination ability to distinguish the
mean Rf value differences between the three lon-
gitudinal groups than both the UMI-RDs and the
hippocampal volume measures. With the help of
UMI biomarker, i.e., the sensitivity for detecting hip-
pocampal morphological change, we detected the
significant group differences for NC versus HM, NC
versus HM, and HT versus HM based on the mean
Rf values. This indicates that APOE �4, as a major
genetic risk factor for AD, affects the hippocampal
morphological changes of elderly cognitively unim-
paired individuals. In addition, the mean Rf values
of HM are larger than those of both HT and NC,
i.e., hippocampal atrophy rate of HM > hippocampal
atrophy rate of HT > hippocampal atrophy rate of
NC, which indicates a clear dose effect of APOE
�4 alleles on longitudinal hippocampal atrophy rates.
This finding is consistent with prior studies [13,
14, 19, 25, 59–63]. However, there are no signif-
icant group differences about mean Rf values of
HM versus HT based on volume measurements.
There are no significant group differences about mean
Rf values of HM versus HT and HT versus NC
based on UMI-RDs. This demonstrates that the UMIs
based on subspace decomposition may outperform
the volume measures and UMI-RDs in distin-
guishing cognitively unimpaired APOE �4 carriers
from NC.
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Table 6
The estimated multiple regression coefficients and p-values of the
multiple regression model (with data from the AZ APOE cohort)

Regression Regression p
Factor Coefficient

(Intercept) –0.084 0.18
Genetic-HT 0.040 0.045
Genetic-HM 0.054 0.0046
Age 0.0023 0.020
Gender-male 0.012 0.45

Multiple R-squared: 0.23

Multiple regression analysis

The effect of APOE �4 allele load on hippocampal
morphology in the healthy population is compli-
cated. For example, the APOE �4 allele interacts with
specific age-associated pathogenic factors [9]. Some
significant interactions with age have been reported
in the literature [25, 64] that the effects of APOE �4
allele load on hippocampal morphology of individu-
als in different aged groups are different. Therefore,
the question is whether the calculated UMIs can still
reflect the different morphological atrophies associ-
ated with different APOE �4 allele loads, considering
the individual age and gender factors. Specifically, it
is beneficial to see if Rf values of UMIs vary sys-
tematically as the copies of the risk allele change. We
generate the multiple regression model to test the rela-
tionship between Rf values of UMIs and the influence
factors including different APOE �4 genetic vari-
ances (HM, HT, and NC), age, and gender, i.e., the Rf

values of UMIs are taken as dependent variables and
the influence factors are taken as independent vari-
ables. In this multiple regression model, the genetic
variances (i.e., HM, HT, and NC) are transformed
into three independent dummy regressors. The esti-
mated regression coefficients and p-values of all the
regression factors are shown in Table 6.

As we expected, changes in genetic factors are
closely related to Rf values of UMIs. As shown
in Table 6, taking the APOE �4 non-carriers as a
reference genetic group, the average Rf values of
UMIs of the HT genetic group increase by 0.040,
and the Rf values of UMIs of the HM group increase
by 0.054. And the regression coefficients of these
two regressors are statistically significant. Moreover,
the regression coefficient of the HM group is larger
than the one of HT group based on the multiple
regression model, which indicates that hippocampal
atrophy rate of HM > hippocampal atrophy rate of
HT > hippocampal atrophy rate of NC under the influ-
ence of age and gender. The results also show that

Table 7
The estimated multiple regression coefficients and p-values of the
modified multiple regression model (with data from the AZ APOE

cohort)

Regression Regression p
Factor Coefficient

Genetic-HT 0.0012 0.96
Genetic-HM 0.0082 0.68
Age 0.0017 0.31
Gender-male 0.013 0.37
Genetic-HT:Age-group-H 0.062 5.6e-03
Genetic-HM:Age-group-H 0.17 1.11e-05

Multiple R-squared: 0.28

the factor of age has a significant influence on the Rf

values of UMIs, i.e., the regression coefficient of the
age factor is 0.0023, and the p-value of the age fac-
tor is 0.020. This indicates that the factor of age also
has a significant impact on UMIs, i.e., UMIs tend to
increase with aging. In addition, the regression coef-
ficient of male subjects equals 0.012 when female
subjects are used as the reference variables, i.e., the
average Rf values of UMIs of male subjects with
the same age and genetic group is 0.012 greater than
female subjects. The results also indicate that there is
no significant correlation between UMIs and gender.

To further verify whether the effects of APOE �4
allele load on hippocampal morphology of individ-
uals in different aged groups are different, we add a
binary indicator variable (Age-group) to each indi-
vidual, which is transformed from the age variable.
When the individual’s age is over 65, the binary indi-
cator is set to high (Age-group-H). Otherwise, it is set
to low (Age-group-L). Moreover, we added an inter-
action term between genetic and Age-group variables
to the regression model to test whether the interaction
will significantly impact UMIs. The estimated regres-
sion coefficients and p-values of all the regression
factors are shown in Table 7.

The results show that the multiple R-square val-
ues of the new multiple regression model increased
from 0.23 to 0.28 compared with the multiple regres-
sion model in Table 6, indicating that the new model
can better explain the Rf values of UMIs. The regres-
sion coefficients of the new multiple regression model
show that the interaction between APOE �4 genetic
factors and age factor has a significant impact on the
Rf values of UMIs. For example, in the HT group,
the average Rf values of UMIs of all the individ-
uals increase 0.0012 compared with the NC group,
and APOE �4 HT genotype will produce an addi-
tional Rf value of UMIs with 0.062 for individuals
of high age (greater than 65 years old). Similarly,
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Table 8
Mean Rf values of different biomarkers comparisons between dif-
ferent longitudinal genotype groups based on ANOCOVA method

(from the AZ APOE cohort)

Biomarker Group Inferential
Comparisons Statistical

UMI NC versus HM F = 12.82; p = 0.0006
NC versus HT F = 4.87; p = 0.029
HT versus HM F = 5.23; p = 0.025

UMI-RD NC versus HM F = 4.43; p = 0.038
NC versus HT F = 2.75; p = 0.10
HT versus HM F = 2.19; p = 0.15

volume NC versus HM F = 11.01; p = 0.0013
NC versus HT F = 4.55; p = 0.035
HT versus HM F = 2.79; p = 0.099

in the HM group, the average Rf value of UMIs
increase 0.0082 compared with the NC group, and
the APOE �4 HM genotype will produce an addi-
tional Rf value of UMIs with 0.17 for individuals
of high age (greater than 65 years old). These results
may indicate that APOE �4 will accelerate the change
of UMIs in the high age population, especially those
among HM group, thereby causing the deterioration
of the individual’s cognitive status, consistent with
observations in prior research [65, 66].

Influence of age on the effect of APOE �4 allele
load

As described previously, the factor of age has a
significant influence on the effects of APOE �4 allele
load on hippocampal morphology of individuals. It is
natural to verify what happens to the mean Rf values
of different biomarkers comparisons between differ-
ent longitudinal genotype groups while considering
the variable age as a continuous covariate. We fur-
ther conducted analysis of covariance (ANOCOVA)
analysis of experimental data above and the results
were shown in Table 8. Compared with Table 5, most
of the results are similar except for the detection of
more significant group differences between HT and
HM groups based on UMIs. For the mean Rf values
comparisons of NC versus HM, NC versus HT, and
HT versus HM, the p-values for UMIs are 0.0006,
0.029, and 0.025, respectively. For UMI-RDs, the
p-values are 0.038, 0.10 and 0.15, respectively. For
volume measurements, the p-values are 0.0013, 0.035
and 0.099, respectively. In short, after excluding the
influence of individual age differences, we can still
find the existence of a clear dose effects of APOE �4
alleles on longitudinal hippocampal atrophy rates.

To answer whether there is a certain age group that
whose Rf value is most informative, we divided the

Table 9
Mean Rf values of UMI comparisons between different longitudi-
nal genotype groups with three age intervals (from the AZ APOE

cohort)

Age Group Inferential
Group Comparisons Statistical

50∼60 NC versus HM F = 1.98; p = 0.17
NC versus HT F = 0.13; p = 0.72
HT versus HM F = 0.87; p = 0.35

60∼70 NC versus HM F = 2.78; p = 0.11
NC versus HT F = 1.85; p = 0.18
HT versus HM F = 1.46; p = 0.24

70∼80 NC versus HM F = 20.83; p = 0.0004
NC versus HT F = 6.61; p = 0.018
HT versus HM F = 7.57; p = 0.013

Significance of gene× age on the Rf values of UMIs

individual ages at baseline test into three age groups,
i.e., 50∼60, 60∼70, and 70∼80 age groups, and then
compared the mean Rf values of UMI biomarker
between different longitudinal genotype groups. The
comparison results are shown in Table 9. It illustrated
that there are no significant group differences about
mean Rf values of UMI biomarker for HM versus
NC, HT versus NC, and HM versus HT within 50∼60
and 60∼70 age intervals. The mean Rf values of
UMI comparisons of NC versus HM, NC versus HT,
and HT versus HM, the p-values are 0.17, 0.72, and
0.35 within 50∼60 age interval, respectively. Within
60∼70 age interval, the p-values are 0.11, 0.18, and
0.24, respectively. Within 70∼80 age interval, we
find more significant group differences between the
three longitudinal genotype groups, i.e., the p-values
are 0.0004, 0.018, and 0.013, respectively. This may
indicate that the dose effect of APOE �4 alleles on
longitudinal hippocampal atrophy rates become more
pronounced in the elder age population.

As described above, the factor of age has a signif-
icant influence on the Rf values of UMIs, i.e., UMIs
tend to increase with aging. We want to study whether
the relationship between the Rf values of UMIs and
the APOE �4 allele loads depend on the level of
individual age. We examined the interactive effect of
APOE �4 allele load by age on the Rf values of UMIs
in our Arizona APOE cohort with regard to APOE
�4 HM, HT, and NC by using general linear regres-
sion model including the term of age, the term of
gene (APOE �4 HM, HT, and NC) and the interaction
term of gene by age. The estimated regression coef-
ficients (the corresponding p-values) of age, gene,
and age× gene are 0.0054 (0.0098), 0.21 (0.028), and
–0.0035 (0.026). The results showed that the interac-
tion term of APOE �4 allele load by age is statistically
significant. It indicated that the relationship between
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Table 10
Group difference comparisons of different biomarkers at baseline tests (from the AZ APOE cohort)

Biomarker Group Average Baseline±Std Inferential
Comparisons Statistical

UMI NC versus HM 11.11± 3.03 versus 12.45± 3.21 F = 3.85; p = 0.053
NC versus HT 11.11± 3.03 versus 11.28± 2.98 F = 0.09; p = 0.77
HT versus HM 11.28± 2.98 versus 12.45± 3.21 F = 2.76; p = 0.10

UMI-RD NC versus HM 10.83± 3.22 versus 11.42± 5.12 F = 0.45; p = 0.50
NC versus HT 10.83± 3.22 versus 11.04± 4.27 F = 0.08; p = 0.80
HT versus HM 11.04± 4.27 versus 11.42± 5.12 F = 0.13; p = 0.72

Volume× 1000 NC versus HM 9.924± 0.89 versus 9.933± 0.91 F = 0; p = 0.96
NC versus HT 9.924± 0.89 versus 9.931± 1.04 F = 0; p = 0.97
HT versus HM 9.931± 1.04 versus 9.933± 0.91 F = 0; p = 0.99

the Rf values of UMIs and gene differs depending on
the ages of individuals.

Group difference comparisons at baseline tests

To verify whether there is any difference among
NC, HT, and HM on the baseline of UMI, UMI-RD,
and volume measurements, we used the UMIs, UMI-
RDs, and volume measures at the baseline test from
the AZ APOE cohort, i.e., 140 cognitively unimpaired
individuals including 61 NCs, 49 HTs, and 30 HMs,
and applied significant test of group mean differences
between NC and HT, NC and HM, and HT and HM
based on the ANOVA method. The results shown in
Table 10 indicated that there are no significant group
mean differences between NC and HT, NC and HM,
and HT and HM by using these three biomarkers at
baseline test. These cross-sectional findings are con-
sistent with observations in prior research [28–30].
The results completed our study and demonstrated
the superior sensitivity gained from our novel frame-
work.

Correlation analysis with volume and cognitive
outcomes

Although our work is focused on APOE genetic
effect analyses, it is natural to verify whether the
UMIs are correlated with other imaging and clinical
rating scores, such as hippocampal volume, MMSE
scores [53], AVLT-LTM scores [54]. Using the Pear-
son parametric test [67], we explore the correlation
analysis between the Rf values of UMIs between
the Rf values of hippocampal volume, MMSE, and
AVLT-LTM measures, to understand which variables
are correlated with UMIs in the AZ APOE cohort.
The correlation results, i.e., correlation coefficients
(CC), 95% confidential intervals of CC, and corre-
lation significance of t-test for CC between the Rf

Table 11
The correlation analysis between the Rf values of UMIs and the Rf

values of hippocampal volume, MMSE, and AVLT-LTM measures
(with data from the AZ APOE cohort)

CC 95% CI of CC p of CC

UMI versus
Hippocampal Volume

–0.80 –0.88∼–0.68 3.43e-12

UMI versus MMSE –0.13 –0.39∼0.16 0.38
UMI versus AVLT-LTM –0.11 –0.38∼0.18 0.46

values of UMIs and the Rf values of MMSE, volume,
AVLT-LTM measures, are shown in Table 11.

Results indicate that the Rf values of UMIs have
strong negative correlations with the Rf values of
hippocampal volume measures, i.e., CC is –0.80
(p = 3.43e-12). This is likely due to the UMIs show-
ing an increase with a corresponding hippocampal
volume decrease, according to the distributions of
UMIs versus volume measurements. In other words,
under the influence of the APOE �4 risk allele, the
hippocampal volume tends to shrink, and the UMIs
obtained by our model has an increasing trend. We
have known that the volumetric MRI measurements
of the hippocampus are generally accepted as the
best-established biomarkers of clinical AD progres-
sion. The relationship between UMIs and volume
measurements indicates that UMIs may depict the
morphological changes induced by AD.

In addition, there is a weak negative correlation
between the Rf values of UMIs and the Rf values
of MMSE scores, i.e., CC is –0.13 (p = 0.38). With
increasing UMIs, the MMSE scores tend to decrease
slightly. Similarly, we also did not find a close associ-
ation between UMIs and AVLT-LTM measures, i.e.,
CC is –0.11 (p = 0.46). A reasonable reason may be
that the morphological changes caused by AD occur
before the cognitive decline in the non-destructive
cognitive stage, as previously reported in the litera-
ture [68, 69].
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DISCUSSION

Here we propose a novel univariate morphometry
index which is sensitive to AD-induced hippocampal
morphometry changes and enjoys improved com-
putational efficiency than our prior work [36]. The
newly proposed UMI demonstrated exceptional sta-
tistical ability to characterize APOE �4 gene dose
effect on longitudinal hippocampal atrophies of
elderly cognitively unimpaired individuals with three
different experimental designs. UMIs illustrate AD-
related morphological changes using a summary
index free from the Type I error associated with
multiple comparisons. The more prominent the indi-
vidual has the atrophic morphological characteristics
caused by AD in the defined ROI regions, the larger
the corresponding UMI value is. Since APOE is a
significant genetic risk factor for developing AD,
its discovery has made it possible to study large
numbers of genetically at-risk individuals before the
onset of symptomatic memory impairment and has
led to the concept of the preclinical stage of AD
[5]. A UMI which is sensitive to APOE �4 dose
effects will help evaluate AD burden, progression,
and response to interventions. Therefore, our work
provides a cost-effective and accurate means for prog-
nosis and potentially facilitates enrollment in clinical
trials with preclinical AD patients.

In the current work, our main goal is to gener-
ate reliable and robust structural MRI ROIs by the
analysis of the statistical morphometry difference
between the pathology-confirmed AD patients and
the pathology-confirmed CU subjects. To address the
inhomogeneity of AD pathology, we used the specific
AD subjects who had the clinical symptom-based AD
diagnosis together with the accumulation of A� in
brains. As we know, one of the hallmarks of AD is the
accumulation of A� in human brains and a positive
A� reading is now accepted as ‘dementia due to AD’
together with the presence of clinical symptoms. In
our previous work [36], the generated ROIs based on
the group common structures of A� positive AD and
A� negative CU groups could reflect intrinsic mor-
phological changes induced by AD. And we found
that A�-induced biomarkers are strong indicator for
brain structure atrophy. Therefore, we continued this
approach that extracts ROIs from the morphometric
difference analysis between A� positive patients and
A� negative subjects. On the other hand, with the
same framework, whether features extracted from the
morphometric analysis between mild AD patients and
CU subjects are more representative of the key initial

changes deserves more investigation. However, due
to AD’s high heterogeneousness, we hypothesize that
it is suboptimal to develop a univariate biomarker
from the morphometric analysis of mild AD patients.

Even though the proposed UMI based on sub-
space decomposition could be used to describe the
hippocampal morphological changes induced by the
APOE �4 risk allele for AD, there are several limi-
tations. First, the relatively small number of subjects
are included as the research objects, e.g., the ROIs
are extracted from 120 A� positive AD patients and
257 A� negative CU subjects), which is not enough
to characterize the induced general morphological
changes induced by AD fully. For example, there
is a certain degree of difference for extracting the
common group structure under the condition of the
limited number of training samples at each time.
Therefore, the generated ROIs may be slightly differ-
ent each time because of different extracted common
group structures. It is conceivable that as the sample
size gradually increases, the difference in the ROIs
caused by the different training samples will be fur-
ther reduced. Therefore, considering the limitation
of the amount of data and the generalization perfor-
mance of ROIs in applications, we assign the same
weight to each point in the ROIs when characterizing
the morphological changing regions induced by AD.
Secondly, we just chose the RD as the hippocampal
morphological feature because RD has been applied
in several subcortical studies and served as an ideal
description of the hippocampal structural changes
induced by AD. However, multivariate tensor-based
morphometry (mTBM) [16] is sensitive to deforma-
tions such as rotation, dilation, and shear along the
surface tangent direction. Therefore, the mTBM can
effectively capture hippocampal structural alterations
(e.g., atrophy and enlargement) in tensor fields. The
ability to describe the morphological features of hip-
pocampi will be enhanced if we combine the mTBM
measure and the RD measure. In addition to morpho-
logical characteristics, some core AD (i.e., A� and
tau) biomarkers are needed to construct the biological
mechanisms underlying our findings in hippocampal
morphology measurements.

Conclusion and future work

A univariate morphometry biomarker generation
method is proposed based on subspace decom-
position to effectively depict the hippocampal
morphological changes induced by three levels
of genetic risk for AD. The empirical results
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demonstrated the potential that the UMIs may capture
the APOE �4 risk allele-induced brain morphom-
etry abnormalities and reveal the dose effects of
APOE �4 on the hippocampal morphology in cog-
nitively normal individuals. In our future work, we
will devise a tensor field data-based univariate mor-
phometry biomarker which may be applied to analyze
diffusion tensor imaging data for the differential diag-
nosis, early detection and tracking, and the prediction
of clinical decline before the onset stage of AD.
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